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ABSTRACT

This paper presents a variable valve lifting methodology for 
turbocharged diesel engines. For this purpose, the diesel engine 
is modeled based on a modified mean-value engine modeling. 
An optimal control strategy is used for maximum volumetric 
efficiency acquirement. Using camless valve train strategy
makes better fuel economy and improved air intake 
characteristics throughout the engine operating map. The 
system is capable of continuously, independently and virtually
controlling all standard parameters of variable valve motion. 
This permits optimization of valve events for any operating 
condition without compromise. The optimized intake valve 
profile is determined, to have the best volumetric efficiency and 
proper operation for each running condition based on the 
existing model make use of  numerical techniques. The model 
used in this paper is validated using simulation results of 
references.
The model treats the cylinder and the manifolds as 
thermodynamic control volumes by using the filling and 
emptying method, solving energy and mass conservation 
equations with sub models for intake manifold, variable valve 
timing, cylinder breathing dynamics and turbocharger including 
turbine and compressor.
This model is a crank angle based dynamic nonlinear model of 
a four-cylinder turbocharged (TC) diesel engine, which captures 
the interactions among the VVT actuation, the turbocharger 
dynamics and the cylinder-to-cylinder breathing characteristics.
The model have been implemented in Matlab/Simulink and 
tested. 
This work shows the results obtained for air management 
control in a turbocharged diesel engine, specifically, manifold 
pressure and air mass flow. These variables are often required to 
achieve better power performance and lower emissions. 
KEY WORDS: Optimization, Optimal Control, 
Turbocharged Diesel Engines, Volumetric Efficiency, Variable 
Valve Lifting.

INTRODUCTION
In connection with growing demands on reduction of Diesel 

or Compression Ignition Direct Injection (CIDI) engines 
exhaust gas emissions, fuel consumption and the need for faster, 
cleaner and more fuel efficient engines simultaneously with 
increasing of its performance, new designs and optimization
methods of existing ones are introduced.
In pursuit of these goals, it is necessary to have as good an 
understanding of engine operation as possible. In spark ignition 
engines, the study of the influence of intake properties on the 
engine performance has included for a long time. However, for 
diesel engines, the work in this area has not been as extensive.
Several works have been done to evaluate the amount of air 
entering the cylinder in diesel engines, but most of them use
mean-value engine models. Storset et al. [1] have presented an 
adaptive observer for in-cylinder air charge estimation for 
turbocharged diesel engines. This observer performs better 
during fast step changes in engine fueling level. Grizzle et al. 
[2] describe the development and validation of a non-linear, 
open loop air charge estimator and assemble a lumped model 
suitable for developing on-line air charge estimation. Although 
some studies have shown that variable intake valve timing,
cause major reduction in pumping losses and fuel consumption 
(Ma [3], and Gray [4], and Elrod [5]). Work in the area of 
maximum lift control that enables stable actuator operation for 
the electro-hydraulic camless valvetrain can be found in
Anderson [6].
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Kolmanovsky et al. [7] summarizes recent developments in 
turbocharged diesel engine models, equipped with variable 
geometry turbine (VGT) and exhaust gas recirculation (EGR).
Engine characteristics are discussed from control perspective.
Model uncertainty and limitations on feasible sensor locations 
are discussed. Jung [8] investigates mean value modeling and 
robust control of the air path of a diesel engine equipped with 
VGT and EGR. The model is derived with a focus on the 
parameterization of the turbocharger. Salcedo et al. [9] shows 
developments made in air management control in a 
turbocharged diesel engine. A non-linear model using first 
principles has been developed. Experimental data has also been 
used to adjust the model.
In this paper, the air charge entering the cylinders downstream 
of the intake manifold is measured. The system dynamics is 
limited by the intake and exhaust manifold filling and
turbocharger dynamics. Not only experiments but also 
mathematical modeling can be employed to determine and 
optimize flow field parameters. In the following sections, a 
phenomenological model incorporating the dynamics for the air 
intake manifold is described.
A schematic diagram of the system is shown in Fig.1.

Fig.1 The basic structure of a turbocharged diesel engine[10]

Increasingly stringent environmental regulations and fuel 
economy have pushed the car manufacturers to use new
methods in their products. VVT strategy is a new method that 
decrease pumping losses and fuel consumption and increase 
volumetric efficiency, torque and engine output power. The 
other way is to install or upgrade turbochargers on diesel 
engines. A turbocharger allows an engine to run at lower 
temperatures while producing an output comparable to the 
output without the turbo. Combustion kinetics shows that the 
production of nitric oxides decreases as the combustion 
temperature decreases [11]. A turbocharger is used to increase 
the air-fuel ratio thereby lowering the in-cylinder peak 
temperatures. The net effect is lower NOx production rates. 
Turbocharged diesel engine operation contains highly coupled 
complex multivariable processes. To achieve good results in 
order to accomplish more restrictive emission standards, 
coupling in the system must be considered, and more complex 
control strategies designed. 
In this paper, a MATLAB/SIMULINK time based model of the 
intake system of a turbocharged diesel engine is developed and 
validated. The objectives are to construct an accurate and 
physically based model of the intake manifold system to be used 
for optimization of the engine operating parameters. Then, a 
VVT strategy is designed to achieve the best volumetric 
efficiency.

NOMENCLATURE

tcB : rotational damping

pc : air specific heat at constant pressure

sd : duration of the seating

IVD : intake valve duration
IVL : intake valve maximum lift
IVO : intake valve opening
IVP : intake valve profile

tcI : rotational inertia of the turbocharger

am : mass of air inducted into the cylinder per cycle

cm& : mass air flow rate through the intake port

imm& : mass air flow rate through compressor

N : engine speed (RPM)

0p : intake manifold inlet pressure

imp : outlet pressure of the compressor

cp : cylinder pressure

R : gas constant

rs : slope of the opening

cs : slope of the closing

ss : slope of the seating

t    : time

0T : temperature of air at the entry of compressor

imT : outlet temperature of compressor

cV : cylinder volume

clV :  cylinder clearance volume
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dV : cylinder displacement volume

cW : power required driving the compressor

tW : turbine power

γ : air specific heat ratio

i,aρ : inlet air density

cη : compressor efficiency

mη : turbocharger mechanical efficiency

vη : volumetric efficiency

tcτ : time constant

tcω : turbocharger rotational speed

θ : crank angle

MODELING

Air Intake Model

Air characteristics in the manifold especially pressure and 
temperature are fundamental elements of combustion process. 
For a turbocharged diesel engine evaluation of these parameters 
between the compressor and the cylinders is very important.

Turbocharger Sub Model

Compressor is located in inlet air path and increases the air 
pressure. Work is done on compressor by a rotational shaft from 
an external source. Heat transfer and changes in potential and 
kinetic energy are neglected. By assuming the internal area of 
the compressor as a steady state system, the following 
expression for compressor power is derived [13]:
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With a constant power of the turbine and ignoring variations 
of compressor air flow, the derivative form of Eq. (1) can be 
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Due to existence of irreversibilities in compressor, the 
compression process is not isentropic. Hence isentropic
efficiency of compressor is defined. This definition conduces to 
a differential equation for intake manifold temperature:
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Compressor Power and Turbocharger Rotational Speed: 

Considering assumptions in reference [12], compressor 
power depends on turbocharger mechanical efficiency and a 
time constant:

( )tmc
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c WW1
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η+−

τ
= (4)

Any excess power (or power deficiency) will result in a change 
of rotor speed according to the turbocharger dynamics equation:

2
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2
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The power loss term is modeled as follows:

( ) tm
2
tctc W1B η−=ω (6)

By replacing Eq. (6) in Eq. (5) and comparing it with Eq. (4), 
the turbocharger rotational speed dynamics can be written as:
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It should be noted that compressor and turbine efficiencies are 
constant parameters. Their values are procured from a nonlinear 
optimization based on a simplified model [8]. Obviously, these 
parameters vary with engine conditions. However, keeping them 
constant is a partly intellectual assumption since the analysis is 
done in a short period of time during intake phase in one engine 
cycle.

Cylinder Volume and Pressure:

The dynamic equations that describe the breathing process 
are based on the principles of the conservation of mass and the 
ideal gas law. The state equation is given as:
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The cylinder volume is a function of the crankangle (θ ) in 
degrees:
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Where:
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The mass air flow from the manifold into cylinder will be stated 
as follows:

( ) ( )mcvvc p,pdLAm
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=& (11)

Where:
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( )vv LA is the valve effective flow area that can be 
approximated with a linear function of the valve lift:

( ) vvv LLA
i
α= (13)

The scale factor α  is set to 0.0175 [14].
The models for intake valve lift profile can be categorized into
two types: Conventional valve lift model and camless valve lift 
model. 
The conventional valve lift motion is characterized by intake 
valve opening (IVO), maximum valve lift (IVL), and intake 
valve duration (IVD). For a conventional engine, the valve lift 
is a sinusoidal function of these parameters and also crank angle
during an intake event:
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In this study, these valve specifications are used: 
.deg189IVDand,mm6IVLdeg,0IVO ===

The expression given for the valve lift implies that there is no 
overlap of individual intake lift profiles. Although this is not 
true for conventional valve trains, it have been seen that this 
simplification has hardly any effect on the model accuracy [15].
For simplicity, the camless intake valve profiles are modeled 
with a smooth exponential opening. 
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λ  is the Parameter which determines how fast the valve motion 
approaches the maximum lift after the opening. 
The constants ,s,s,s scr  and sd  are fixed in the time domain. 
A coordinate transformation to crank angle domain results in 
different valve profiles for different engine speeds. 

Volumetric Efficiency
Volumetric efficiency ( vη ) is defined as the volume flow

rate of air into the intake system divided by the rate at which 
cylinder volume is displaced by the piston:

NV
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a
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(16)

An alternative equivalent definition for volumetric efficiency is:

di,a

a
v V

m
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=η (17)

Simulation Results

The nonlinear and coupled differential equations of the 
above-mentioned model were coded in Matlab/Simulink 
software. 
Fig.2 shows the diagram of intake manifold temperature 
behavior. According to the study, intake manifold pressure and 
temperature profiles are very similar. They represent a first 
order system behavior. The manifold pressure depends directly 
on the compressor behavior. Boost pressure and temperature are 
a little low because of three reasons: firstly, this simulation is 
done at low engine speeds (about 1200 rpm). Secondly, turbine
power as an input parameter is considered low (around 0.2 KW) 
in order to obtain good consistency with simulation results of 
reference [13]. Thirdly, compressor efficiency is not very high 
and according to reference [8] is set to 61 percent. Manifold 
pressure diagram is shown in Fig.3. The Conventional intake 
valve profile is shown in Fig.4. The area defined by the intake 
valve profile, IVP , is reduced at higher engine speeds as 
shown in Fig.5. Camless intake valve profile shown in Fig. 6, 
the cylinder pressure cip is plotted in Fig.7, and the mass air 

flow rate cm& is plotted in Fig.8. For the values that has been 

used in this simulation, the intake valve opening ( )IVO  is 
equal to 0 deg, valve lift is equal to 6 mm, closing time is equal 
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to 180 deg and since the intake valve duration IVD  is equal to 
the closing time plus the seating duration, IVD  is equal to 189 
deg.
Fig.9 shows the simulation result for volumetric efficiency of a 
conventional turbocharged diesel engine at different engine 
speeds. 
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Fig.9  Volumetric efficiency of a conventional turbocharged 
diesel engine at different engine speeds

Model Validation

The air characteristics in intake manifold such as temperature 
and pressure have very small variations. In case of low turbine 
or compressor powers or small variations in turbine power 
during a cycle, temperature and pressure can be considered 
constant. 
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Fig .10 Intake manifold temperature comparison
But in the case of higher turbine or compressor powers these 
variations should be taken into calculations.
The results obtained from this simulation are compared with the 
simulation results of reference [13] in Figs.10 and 11. They 
show nearly good agreements with the reference results.
These results obtained in low engine speed and low turbine 
power conditions.
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Fig .11 Intake manifold pressure comparison

OPTIMIZATION

In this section numerical optimization postulating optimal 
valve geometry in order to maximize volumetric efficiency in 
terms of the camless intake valve lift profile is performed.
The numerical technique that has been used in this work is 
based on the following general procedure:
An initial guess is used to obtain the solution to a problem in 
which one or more of the necessary conditions stated before are
not satisfied. The solution is then used to adjust the initial guess 
in an attempt to make the next solution come "closer" to 
satisfying all necessary conditions. If these steps are repeated 
and the iterative procedure converges, the necessary conditions 
will eventually be satisfied [16].

Problem of optimization of intake valve profile in order to 
maximize volumetric efficiency

In this section, optimized intake valve profile are investigated 
make use of optimization techniques that have been described 
in previous section. Therefore, first of all the cost function is 
composed. As the purpose is to maximize the volumetric 
efficiency the model that has been described in Eq. (17) is used 
as cost function:
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With boundary conditions given underneath:

( )
( ) 0tLtt

0tLtt

fvIVCf

vIVO

=⇒=
=⇒= oo

Inequality constraint

As we have discussed before, we can characterize the camless 
valve motion by timing (or opening) IVO , maximum valve 
lift IVL , and duration IVD  of each intake valve. IVO and 
IVD ( )IVOIVC −  are considered as boundary conditions, 
thus they are fixed values and the only parameter that varies 
with time is IVL . Necessary conditions of optimization 
problem described in previous section for camless intake valve 
lift profile are executed in order to find its optimal function.
The only constraint in our problem is maximum intake valve lift 
value that appears as an inequality constraint in the form of the 
following equation:

( ) 0LLLLL0 2
vvmaxvmaxvv =α−−⇒≤≤ (19)

Thus the cost function can be written as follows:

( ) ( )[ ] dtLL3
v

m
L~ IVC

IVO

t

t

2
vv

d

cyl
vv ∫ 








α−−λ+

ρ
=η

&
(20) 

 
The specifications that have been used in optimization solution 
are as follows:
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Optimized results

Applying optimization processes to the model lands in 
nonlinear and coupled differential equations that had been 
coded in Matlab/Simulink software. Furthermore, the Matlab 
stiff integration numerical algorithm was used to solve the 
nonlinear equations of the necessary conditions and boundary 
conditions of optimum system.  
The optimization code was run for maximized values of 
volumetric efficiency at different engine speeds. scr sss ,, In 
Eq. (15) are the parameters which form camless intake valve 
profile. These are the most important parameters which have 
been optimized exclusively in each different engine speed in 
order to maximize volumetric efficiency. 
As it can be seen in Fig.12, with optimization of intake valve
lift profile, volumetric efficiency has been improved in all 
engine speeds.
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Fig.12 Conventional and optimized volumetric efficiency at 
different engine speeds

CONCLUSION

In this work, a theoretical air intake model for a 
turbocharged diesel engine based on physical relations is 
proposed. This model is programmed in Matlab/Simulink
software. The objective has been to analyze the performance of 
a camless turbocharged diesel engine in order to increase 
volumetric efficiency. To find optimal valve timing strategy for 
maximizing engine volumetric efficiency in terms of the intake 
valve lift profile, numerical optimal control methodologies have 
been applied in this work.
Finally, the main conclusions are as follows:
• The simulated model in this work agrees reasonably well with 

other simulated results.
• The numerical engine optimization highlights the fact that 

camless optimized intake valve profile has the capability to 
increase the volumetric efficiency both at low and high 
speed conditions.
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